Test Tube Distributed Systems
Based on Splicing'

Erzsébet CSUHAJ-VARJU
Computer and Automation Institute
Hungarian Academy of Sciences
Kende utca 13 — 17, 1111 - Budapest, Hungary

Lila KARI
Department of Mathematics and Computer Science
University of Western Ontario
London, Ontario, N6A 5B7 Canada

Gheorghe PAUN?

Institute of Mathematics of the Romanian Academy
PO Box 1 - 764, 70700 Bucuresti, Romania

Abstract. We define a symbol processing mechanism with the com-
ponents (test tubes) working as splicing schemes in the sense of T.
Head and communicating by redistributing the contents of tubes (in
a similar way to the separate operation of Lipton-Adleman). (These
systems are similar to the distributed generative mechanisms called
Parallel Communicating Grammar Systems.) Systems with finite
initial contents of tubes and finite sets of splicing rules associated to
each component are computationally complete, they characterize the
family of recursively enumerable languages. The existence of univer-
sal test tube distributed systems is obtained on this basis, hence the
theoretical proof of the possibility to design universal programmable
computers with the structure of such a system.

Keywords. DNA computing, Parallel communicating grammar
systems, Turing machines, universality

1Research supported by the Academy of Finland, Project 11281, the Hungarian Scientific
Research Fund OTKA grant no. T017105, and grant OGP0007877 of the Natural Sciences
and Engineering Research Council of Canada

2All correspondence to this author. Current address: Turku Centre for Computer Sci-
ence TUCS, Data City, Lemminkaisenkatu 14 A, 4th floor, FIN - 20520, Finland; E-mail:
paun@sara.utu.fi

1. Introduction

This paper can be seen as a continuation of some previous papers investi-
gating the power of the splicing operation and proving that certain classes of
H systems are computationally complete (they have the same power as Turing
machines) — see [11], [8] and their references. However, a new idea is brought
here into the DNA computing area, that of distributed computing, in the sense
of grammar systems theory (see [4]). More precisely, we introduce here dis-
tributed splicing systems working in a way similar to parallel communicating
(PC) grammar systems of [15]. In this way we bring together the idea of splic-
ing, in the sense of [7], that of test tube compuling, in the sense of [2], [9], and
that of a PC grammar system.

The splicing operation, as introduced in [7], is a model of the recombinant
behavior of DNA under the influence of restriction enzymes and lygases. One
gives pairs of the form (uy, us), (us, u4), encoding the sites where enzymes can
cut the DNA sequences, and pairs of such pairs — in total we have in this
way quadruples (uy, us; us, ug) — specifying the possibility to paste substrings
obtained after such a cutting. Thus, from two strings , y having uius, usus as
substrings, that is @ = zjujusxs, y = y1uszuays, we first obtain the substrings
U1, Usla, Y1 U3, UaY2, then we can build any of the strings @1 ujusxs, U Uays,
Y1Ustala, Y1usuaxs. The second and the last string are (possibly) new. We say
that we have spliced #, y and we have obtained w and z, where w = @1uyu4ys,
Z = Yi1uszusxs.

The splicing operation has been investigated in a series of papers; we refer
to [11] and to [8] for bibliographical information (and surveys of results). For
our purposes, important is the notion of an extended H system, a generative
mechanism based on splicing, introduced in [14], and which turned out to be
computationally complete, its power is equal to the power of Turing machines
for certain rather weak variants; see [13], [6]. In particular, in [6] one shows that
universal H systems exist, with finite components (universal here is understood
in the same sense as for universal Turing machines: systems with all but one
component fixed and which can behave as any particular H system when a code
of the particular one is added to the non-fixed component).

In 1994, Adleman has shocked the computer science community by solving
(a small instance of) the Hamiltonian path problem in a graph by DNA ma-
nipulation in a test tube. Extensions of this procedure were proposed by [10],
[9]. Continuing the ideas in [9], [2] proposes a sort of ”programming language”
(a formalism) for writing algorithms dealing with test tubes. In fact, the basic
primitive of this formalism is the tube, a set (or a multiset, with multiplicites
associated to its elements) of strings over a given alphabet. The basic oper-
ations of this formalism describe operations with tubes: merge (put together
the contents of two tubes), separate (produce two tubes from one, according to
specified criteria), amplify (duplicate a tube), check whether a tube is empty or
not. We shall use here mainly the separate operation, with a specific definition.

The parallel communicating (PC) grammar systems consist of several usual
Chomsky grammars, working synchronously, each one on its own sentential form
(initially equal to the axiom) and communicating by request in the following
way: there are special symbols used only for starting communications (and
called query symbols); when such a symbol is introduced by a component ¢
and pointing to another component j, then the current sentential form of the
component j is transmitted to component ¢. Thus, there are two types of steps
of the work of such a system: rewriting steps (componentwise derivations) and
communication steps. One component of the system is designed as the master,
and the language generated by it, with or without the help of other components,
is the language generated by the system. Details can be found in [4].

Here we consider a sort of PC grammar systems whose components are tubes
in the sense of [2], working as splicing systems, and communicating their con-
tents in the sense of the separate operation; more specifically, the result of the
iterated splicing of the contents of each tube is redistributed to all tubes ac-
cording to certain selector alphabets associated to the tubes: a string consisting
of symbols in a selector alphabet will be transmitted to the tubes having that
selector associated with them. Again one tube is designed as the master and its
contents put together is the result of the system ”computation”. We call such
a system a fest tube distributed system, shortly, a TT system.

The large power of the splicing operation is confirmed also in this framework:
TT systems with finite components characterize the recursively enumerable lan-
guages; more precisely, n+8 components are enough for generating all languages
over an alphabet with n symbols (whereas systems with two components can
generate non-regular languages, systems with three components can generate
non-context-free languages, and six components are enough for generating non-
recursive languages). The proof directly entails the existence of universal TT
systems. Therefore, a result as in [6] is obtained for this new mechanism: one
can design universal programmable DNA computers based on splicing. In our
case, the ”computer” 1s a T'T parallel communicating system able to simulate
any other TT system (any Turing machine), after introducing its ”program” in
the ”computer” as an axiom of a certain component. Of course, this is only
a theoretical result, the possibility to practically implement the operations on
which a TT system is based — splicing and separation — is a technical /biological
question.

2. Basic definitions; the splicing operation

We use the following formal language notations: V* is the free monoid gen-
erated by the alphabet V| A is the empty word, FIN, REG, CF, CS, RE are
the families of finite, regular, context-free, context-sensitive, and recursively
enumerable languages, respectively. For general formal language theory prereg-
uisites we refer to [18]; for grammar systems area we refer to [4].

A splicing rule (over an alphabet V') is a string r = ui#usSus#us, where
w; € V¥, 1 <7 <4, and #,$ are special symbols not in V. For such a rule r
and the strings z,y, w, z € V™ we write

(l‘ay) ty (waz) iff = z1uusz2, Yy = y1usuay,
W= T1U1U4Y2, 2 = Y1U3U2T2,

for some x1,x2,y1,y2 € V*.

We say that we have spliced x, y at the sites ujusg, uguy, respectively, obtain-
ing the strings w, z; @, y are called the terms of the splicing. When understood
from the context, we omit r from ..

A splicing scheme (or an H scheme) is a pair ¢ = (V, R), where V is an
alphabet and R is a set of splicing rules (over V). For a language L C V™, we
define

o(L)y={weV* | (x,y)F (w,2)or (2,y) Fr (z,w),
for some ¢,y € L,r € R}.

(By definition, o(L) = § if L =@ or R = 0.) Then, we define

for

T L) = o' (L) Uo(a' (L)), i > 0.

Therefore, o*(L) is the smallest language containing L and closed under the
splicing operation.
An extended H system is a quadruple

")/ = (V’ T’A’ R)’

where V' is an alphabet, T' C V (the terminal alphabet), A C V* (the set of
axioms), and R C V*#V*$V*#V*. The pair ¢ = (V, R) is called the underlying
H scheme of v. The language generated by 7 1s defined by

L(7) = o*(A) N T*.

An H system v = (V, T, A4, R) is said to be of type Fy, Fa, for two families of
languages Fy, Fo, if A€ F1, R€ F5.

We denote by EFH(Fy, F3) the family of languages generated by extended H
systems of type (Fy, Fa).

An H system v = (V,T, A, R) with V = T is said to be non-extended; the
family of languages generated by non-extended H systems of type (Fy, Fa) is
denoted by H(Fy, F»). Obviously, H(Fy, F3) C EH(Fy, Fy).

The splicing operation is introduced in [7] for finite sets of rules; the case
of arbitrarily large sets of splicing rules is considered in [12]; the extended H
systems were introduced in [14]. Details can be found in [8], [11].

For instance, in [5], [16] it is proved that

H(FIN,FIN) C REG.
(The inclusion is, in fact, proper.) Using this relation, in [14] it is proved that
EH(FIN,FIN) = REG.

Moreover, in [13] it is proved that the extended H systems with finite sets of
axioms and regular sets of splicing rules are computationally complete, that is

EH(FIN,REG) = RE.

Therefore, such systems are as powerful as the Turing machines (and any other
class of equivalent algorithms).

3. Test tube systems

A test tube (TT, for short) system (of degree n,n > 1) is a construct
= (Va (Ala Rla Vl)a ey (Ana Rna Vn))a

where V is an alphabet, A; C V™ R; C V*#V*$V*#V* and V; C V|, for each
1<e<n.

Fach triple (A;, R;, Vi) is called a component of the system, or a tube; A; is
the set of axioms of the tube i, R; is the set of splicing rules of the tube ¢, V; is
the selector of the tube 1.

We denote

B:V*-ij*.
i=1

The pair o; = (V, R;) is the underlying H scheme associated to the compo-
nent ¢ of the system.

An n-tuple (Ly,..., Ly), L; CV*,1 < i< n,is called a configuration of the
system; L; 1s also called the contents of the ith tube.

For two configurations (L1, ..., Ly), (L},..., L}), we define

(L1,...,Ln) = (L},...,L,)iff
Ly = | J (03 (L) N V) U (0F (Li) N B),
j:l
for each 7,1 < i < n.

In words, the contents of each tube is spliced according to the associated set
of rules (we pass from L; to ¢ (L;),1 < i < n), and the result is redistributed
among the n tubes according to the selectors Vi, ..., V,; the part which cannot

be redistributed (does not belong to some V;*, 1 < i < n) remains in the tube.

Because we have imposed no restrictions over the alphabets V;, for example,
we did not supposed that they are pairwise disjoint, when a string in o7 (Lj)
belongs to several languages V,*, then copies of this string will be distributed to
all tubes ¢ with this property.

A computation (of length k, &k > 0) in T is a sequence of configurations

C={(,.. L) |0 <t < k)
such that

(i) (I, L) = (A, A,
(4%) (L(lt), L)y = (L(lH_l), . LUD) with respect to T,
for each 1,0 <t <k —1.

We denote by Ci(T') the set of all computations of length &,k > 0, of T, and
by C.(T') the set of all possible computations,

Cu(I) = | Cu(D),

E>0

where Co(T) = {(A1,...,A4,)}. The ith result of a computation C' =

{(L(lt), . ..,Lg)) | 0 <t < k} is the set of all strings which were present in
the tube 7, that is

p(C)=J L.

0<t<k

One of the components of a TT system I' is designed as the master one and
the union of its contents in all possible computations is the result of the system
computations. By convention, we consider that the first tube is the master,
hence the result of the work of I', the language generated by T, is

= |J m).

CeC.(I)
We can also write, in a way closer to the style of formal language theory,
LTy={weV" | we L(lt) for some
(A1, ..., An) =" (L, LWy ¢ > 0},

where =" 1s the reflexive and transitive closure of the relation —.

Given two families of languages, F, Fa, we denote by TT, (Fy, F) the family
of languages L(T), for T' = (V, (A1, R1,V1),...,(Am, R, Vin)), with m < n,
A; € F1,R; € Fa, for each 4,1 < i < m. (We say that T is of type (F1, F2).)
When n is not specified, we replace it by *, that is we write

TT.(F1, Fy) = |] TTu(Fy, Fa).
n>1

A TT system as above has a structure very similar to that of a parallel
communicating grammar system. The rewriting steps in a PC grammar system
correspond here to the splicing phases, that is to passing from Lgt) to U*(Lgt)),

whereas the communication steps correspond to the redistribution of o* (Lgt))
to the tubes according to the selectors Vi,...,V,,. However, in a PC grammar
system the communication is done on request: the receiving component starts
the communication, by introducing a query symbol; here the communication is
automatically performed after every splicing step. Note that a splicing step is an
iterated one (maximal as regards the produced output), not a single rewriting
step as in a PC grammar system.

Also note that in some sense we have used here three of the basic operations
in Adleman’s ”programming language” (2], [9]): the separate operation when
redistributing the contents of a tube according to the selectors, the merge oper-
ation when constituting the new tube contents, as well as the amplify operation,
when copies of the same string is sent to several tubes at the same time. The
systems we obtain prove to be computationally complete, equivalent in power
to Turing machines. On the other hand, we use a basic new ingredient: the
splicing operation, which we already know that it is quite powerful ([13], [6],
ete.).

4. An example

We illustrate the definitions above with an example discussed in some details.
Consider the system

I'=(V,(A1, R, V1), ..., (A4, R4, Va)),

with
V= {aabacadaeafag}a
Al = {cabd, gb@}, Rl = {b#d$g#b6}, Vl = {Cl, ba ¢, d}a
Ay = {fag}, Ry = {fa#tgSc#al, Vo={a,b c e},
Az = {gd}a R3 = {b#6$g#d}, Vs = {Cl, ba €, f}a
Ag = {cg}, Ry = {c#gS8f#a}, Vi={ab,d, [}

We start from the configuration

(A1, Ag, Az, Ag) = ({cabd, gbe}, { fag}, {gd}, {cg}).

Because we can perform only one splicing, in tube 1, (cab|d, g|be) - (cab?e, gd),
we have

o (A1) = Ay U {cab’e, gd},
05(Az) = Ay,
o5(As) = As,
oi(As) = As.

(The vertical bars in (cabld, g|be) are added for an easier readability.) The string
cab®e has to be transmitted to the second tube, gd will remain in tube 1, hence
the next configuration is

(L0, 15, 10, 140) =
= ({cabd, gbe, gd}, {cab’e, fag}, {gd}, {cg}).

Now, tube 1 can repeat the previous splicing, but also a splicing in tube 2 is
possible:

The string cab?e will be again transmitted from tube 1 to tube 2, but tube 2
contains already this string. The string fa?b?e will be moved from tube 2 to
tube 3, hence

01 1,19 =
= ({cabd, gbe, gd}, {cab’e, fag, cg}, {fa’b’e, gd}, {cg}).

We obtain
o (157) = L U {cab?e},
o5(L5) = L U {fa*be},
o5(L5)) = LS U {fa®h?d, ge},
(L) = 1§,

hence

(L, 18, L, 1) =
= {cabd, ghe, gd}, {cab’e, fag, g}, { fa*b?e, gd, ge}, { fa®b?d, cq}).

Therefore,

ot (LY = L U {cab2e},
3Ly = L5 U {fabe},
5Ly = L5 U {fa®bd},
(V) = 1 U {ca®?d, fg},

hence

(9,10 59, 1) =
= ({cabd, ca®*d, gbe, gd}, {cab’e, fag, cg}, {fa*b%e, gd, ge}, {fa*b*d, cq, fq}.

One can see that the system works as follows:

— The strings containing the symbol g are never moved from a tube to
another one.

— The first component adds one b to strings of the form ca’t’ d, and replaces
d by e. The obtained string is transmitted to the second tube, which adds
one a and replaces ¢ by f. The obtained string is passed to the third tube
which replaces e by d. The result is a string of the form fa’t'6/+1d, hence
it will be transmitted to tube 4. Here, f is replaced by c¢. In this way, we
pass from ca’b’ d to ca’t'b7T1d, hence the process can be iterated. Because
we start from cabd, we can obtain in this way all strings ca”b"d, n > 1.

— All the splicing rules involve a symbol g, but no one of the strings contain-
ing g and not being an axiom (gd, cg, ge, fg in tubes 1, 2, 3, 4, respectively)
can be used in a splicing. Thus, at every splicing we have to use one of
the axioms gbe, fag, gd, cg, that is we cannot splice two strings obtained
at a previous splicing and not containing the symbol g. In this way, the
strings of the form ca™0”d obtained in the first tube have n = m.

Consequently,
L(T)Neatbtd = {ca™b"d | n > 1},

which is not a regular language.
Notice that T" is of type (FIN, FIN), hence we have obtained

TTy(FIN,FIN) — REG # 0.

(We shall improve this result below.) Compare this result with the relation
H(FIN,FIN) C REG [5], [16]; we conclude that the distributed mode of
working in a TT system, the cooperation of the components, is productive, it
strictly increases the power of H systems.

In fact, the TT systems with finite components are computationally com-
plete:

5. Characterizing recursively enumerable languages

The following inclusions are obvious:

Lemma 1. (i) T7T,(F1, Fo) C TTh1(F1, Fa), for alln > 1 and Fy, Fs.
(i) TT, (Fy, Fa) CTT,(F], F}), for alln>1 and Fy C F{, Fy C FJ.
iFrom Turing-Church thesis (or by a direct proof), we get

Lemma 2. TT.(Fy, F») C RE, for all I\, Fs C RE.

By definition, we also have

Lemma 3. H(Fy, Fs) = TTi(Fy, Fa), for all Fy, Fs.

The following relation is the core result of this paper.

Lemma 4. RECTT,(FIN,FIN).

Proof. Take a type-0 grammar G = (N,T,S,P) with T = {a1,...,an}
and N = {Zy,...,Z,},Z1 = S. Consider the new symbols A, B and replace
in each rule of P each occurrence of Z; by BA'B,1 < i < m. We obtain a
set P’ of rules such that S =" w,w € T*, according to the grammar G if
and only if BAB —* w using the rules in P’. For uniformity, we denote
A= ant1, B = anya. Construct the TT system

I' = (V,(41,R1, V1), (A2, R2, Vo), (A31,R31,V31), ..., (A3 nt2, Ranta, Vanta),
(A4a R4a V4)a (A5a R5a V5)a (A6a R6a V6)a (A7a R7a V7))a

with
V=TU{A B X, X' Y,2,2 0V |1<i<n+2},
and
Al :wa
Rl = wa
i =T,
A, = {XBA™'BBABY, 7' Z}U
{ZvY |u—v e PU
{12V |1 <i<n+2},
Ry = {#uY$Z#vY |u—v € PIU
(#a;YSZH#Y: | 1<i<n+2}U
{7'#7$X BA™TL B4},
Vo = TU{ABX,Y),
Agyi = {X’aiZ},
Ry = {X'a;#$X#[1<i<n+2},
Vs; = TU{A B, XY}, for 1 <i<n+2,

10

A4 = {ZY}’

Ry = {#VSZ#Y |1<i<n+2),
Vi = TU{ABXU{Yi|1<i<n+2},
As = {X7Z},

Ry = {X#Z$X'#},

VS = TU{AaBaX/’Y}a

As = {ZZ}a

Rs = {#YSZZ#},

Ve = TU{Yy, z'}

A = {77},

Re = {#2787'#),

Vi = Tul{Z}.

Let us examine the work of T'.

The first component only selects the strings produced by the other com-
ponents and which are terminal according to G. No such terminal string can
enter a splicing, because all rules in By — R7 involve symbols XY, X' 7 Y},
for 1 < ¢ < n. (When speaking about Rz we mean the union of all sets
R3;,1<i< n.)

In the initial configuration (Ai,..., A7), only the second component can
execute a splicing. There are three possibilities: to use a rule of the form
#HuY§#0Y | for u — v € P’ (we say that this is a splicing of type 1), a rule
of the form #a;Y$Z7#Y;, for 1 < i < n + 2 (a splicing of type 2), or the rule
Z'# 78X BA™TL B4 (a splicing of type 3).

Consider the general case, of having in tube 2 a string XwY, with w €
(TU{A, BH)*BA™tLB(T U {A, B})* (initially, w = BA™*!BBAB). We have

three possible splicings:

1. (Xwi|uY, Z|vY) b1 (Xwi0Y, ZuY), for — v € P’ providing that w =
wu,

2. (Xwrl|a;Y, Z|Yi) bo (Xw1Yi, Za;Y), 1 <i<n—+2 when w = way,
3. (2|2, XBA™™ Blw,Y) b5 (Z'w,Y, X BA™ BZ), for w = BA™ Bu,.

The string XwivY 1s of the same form with Xw;uY and i1t will remain in
tube 2, entering new splicings of one of the three types. Clearly, the passing
from XwiuY to XwivY corresponds to using the rule u — v in P’ on a suffix
of the string bracketed by X, Y.

The string ZuY will remain in tube 2, too. Such a string ZuY can en-
ter a splicing in three cases: (i) if ZuY is already an axiom, hence noth-
ing new appears in this way, (ii) as the first term of a splicing of the form
(Zur W'Y, Z|W'Y) By (Zuv'Y, ZW'Y), for u = wiu’ and w' — o € P’; one

11

obtains two strings of the same form ZzY which will remain in tube 2, (iii)
(Zur|a;Y, Z|Y;) Fo (ZunYi, Za; V), for u = uya;, 1 < i < n+2;the string Zu, Y;
cannot enter new splicings and cannot be transmitted to another tube. After
any sequence of such splicings, the obtained strings will still be of the form ZzY
hence they will remain in tube 2 and will enter either ”legal” splicings, when
they are axioms, or splicings still producing ”useless” strings ZyY.

Therefore, after a series of splicings of type 1, a splicing of type 2 will
be eventually performed in tube 2, producing strings of the form Xuw,Y;
and Za;Y. The second string behaves exactly as ZuY discussed above. If
a string XwY; enters a new splicing in tube 2, this can be only of type 3,
(Z2'Z, X BA™ L BlwyY;) b3 (Z'weY;, XBAT™TLBZ), for w; = BA™T!Buws.
The string Z’w-Y; cannot enter new splicings in tube 2 and cannot be trans-
mitted to another tube. The case of X BA™t! BZ will be discussed below. Any
string Xw,Y; is moved from tube 2 to the corresponding tube (3,4), where we

have to perform
(X' a;| 7, X|w1 Vi) b (X aun1 Vi, X 7).

The second string, X 7, remains in tube (3,¢) and it will enter only splicings
of the form
(X'a;|Z2, X2 (X'a; 2, X Z),

hence producing nothing new. The first string cannot enter new splicings in
tube (3, 1), it will be transmitted to tube 4, where the only possible splicing is

(X a;w1 |V, Z|Y) b (X qjun Y, ZY5).

Again the second string remains in the tube and the possible splicings using
it will produce nothing new, whereas the first string will be moved into tube 5.
There we obtain

(X7, X' |a;u1 V) F (Xaun Y, X' 7).

The second string remains in tube 5, and it produces nothing new, the first
one has to be communicated to tube 2. We started from Xwjia;Y and we
returned to tube 2 the string Xa;w,Y. A symbol from the right-hand end of the
string bracketed by X, Y has been moved to the left-hand end. In this way the
string bracketed by X, Y can be circularly permuted as long as we want. In this
way, we can “rewind” the string till having as a suffix the left-hand member of
any rule in P’ we want to simulate by a rule in Rs of the form #uY$Z#vY.

On the other hand, if we start from a string XwBAJ BY , we have to use
tubes 2, (3,n+2) or (3,n+1), 4, 5, iteratively, until obtaining X BAJ BwY: no
rule of P’ can be simulated in tube 2 after removing the rightmost occurrence
of B in XwBA/ BY , and, similarly, we cannot use the rule Z/#2$X BA™+' B#
in R» after removing the rightmost occurrence of B in XwBAJ BY . Because
the substring BA™*! B is always present (and exactly one copy of it is present
as long as we do not use the rule Z'#Z$X BA™T! B# in Rs), we know in every
moment where the ”actual beginning” of the string is placed. In conclusion,

12

using splicings of type 1 and the rewind technique made possible by the above
described passing through tubes 2, 3, 4, 5, we can simulate every derivation
according to P’.

Conversely, exactly strings Xw; BA™! Bw,Y can be obtained in this way
which corresponds to strings wyw; which can be obtained starting from BAB
and using rules in P’.

Consider now the splicing of type 3 in tube 2. If the string XBA™+! BZ is
used in further splicings, they are of the form

(2|2, XBA™ M B|Z) - (7' Z, XBA™ T BZ),

therefore no new string is obtained in this way.
The first string produced by a splicing of type 3, Z/w1Y, will be transmitted
to tube 6; here we have only one possibility

(Z'w|Y, ZZ|) b (Z'wy, ZZY).
If ZZY will enter new splicings, they are of the form

(Z'2|Y, ZZ|Y) - (Z'aY, Z2Y),
(ZZ|Y,ZZ|Y)F (22Y,22Y),

hence no new string is obtained.
The string Z'w; cannot enter new splicings in tube 6. If wy € T* (and only
in this case), it will be moved in tube 7, where we perform

(122, 2" \wy) ¥ (w1, 2 22).

The string w; is terminal. It will be transmitted to all tubes — including the
first one. No splicing can be done on a terminal string. As we have seen above,
such a terminal string w; is a string in L(G).

If the string Z’w1Y will enter new splicings in tube 2, they can be of forms
1 and 2:

(Z'wa|uY, Z|vY)) b1 (Z'wavY, ZuY), for u — v € P’ wy = wou,
(Z'wa|a; Y, Z|Y;) ko (Z'waYi, Za;Y'), for 1 < i < n,wy = waa;.

The behavior of ZuY, Za;Y, Z'w-Y; is known, similar strings appeared in
the previous discussion. The string Z'w,vY can be obtained by per-
forming first (X BA™H Bws|uY, Z|vY) b1 (XBA™ M BwyvY, ZuY') and then
(7' Z, X BA™ L BlwavY) b3 (Z'wqvY, XBA™tLBZ), hence also this string
is a "legal” one. No parasitic string can reach the first tube, consequently,

L(T) = L(G). O

The above proof is based on the same idea as the proof of the inclusion
RE C EH(FIN,REG) in [13]. The same idea is used in [6] in order to prove

13

that every type-0 grammar can be simulated by an extended H system of type
(FIN,FIN), providing that some control on the use of the splicing rules is
considered. Namely, a random context-like control is used: each splicing rule
has associated certain symbols and it can be applied to a pair of strings only
when the associated symbols appear in these strings (the permitting context
variant), or they do not appear (the forbiding context variant). Therefore, both
here and in [6] we have to pay for the passing from REG to FIN, as type of the
sets of rules, by imposing some regulation on the rule using. In view of the result
in [5], [16], this cannot be avoided: extended H systems of type (FIN,FIN)
generate only regular languages.

On the other hand, the condition we use here for regulation — the separation
of strings according to their membership to alphabets Vi,...,V, — although
similar, is weaker than the random context condition: a string w will be trans-
mitted to tube ¢ when w € V;* without knowing that all symbols in V; are
present in w (but knowing indeed that no symbol outside V; appears in w). An-
other essential difference between a TT system and an extended H system with
random context conditions is that we perform here an iterated splicing in each
tube, thus applying the tube splicing rules as long as we can, even to strings
which can be transmitted to another tubes. This seems to be more realistic
than checking random context conditions after each single splicing.

Moreover, we have
Lemma 5. EH(Fl, Fz) g TTQ(Fl, Fz)
Proof. For an extended H systems v = (V, T, A, R), consider the T'T" system

= (V,(0,0,7),(4, R,V)).

Obviously, L(y) = L(T') : the second component of T simulates the work of v
(the splicing operation, starting from A) and the first component simply selects
the strings in 7" produced by the second component. a

Lemma 6. TT5(FIN,FIN)— REG # 0.

Proof. Consider the T'T system

I' = ({a,b,¢,d e}, ({cabe,ebd, dae}, {b#cSedbd, daFteScdtalt, {a,b,c}),
({ec, ce}, {b#dSedc, c#eSd#a}, {a,b,d}).

We obtain
L(T)Necatbte = {ca™b"c|n > 1} ()

Indeed, the only possible splicings in the first component are

(aa't|c, elbd) by (aa'tTid ec), o € {c,d},
(dale, ¢la’t! o) Fo (da'T W o, ce), a € {c,d}.

14

One further occurrence of a and one further occurrence of b can be added in
this way; only when both one @ and one b are added, hence the obtained string
is da’T'h/T1d, we can move this string to the second tube. Here the possible
splicings are

(aa'ti|d, ele) by (aa't e, ed), o€ {c,d},
(cle, d|a’t! &) o (ca't/ o, de), o € {c,d}.

Only the string ca’t’ ¢ can be moved to the first tube, hence the process can
be iterated. No splicing in tube 1 can involve a string of the form da’b’d.

Consequently, we have the equality (%), which proves that L(T') is not a
regular language. ad

Synthesizing the previous lemmas (and using the fact that H(FIN, FIN) C
REG = EH(FIN,FIN), strict inclusion), we get

Theorem 1.

TT\(FIN,FIN) C REG C TT2(FIN,FIN) C TT5(FIN,FIN) C ...
. CTT(FIN,FIN) = TT.(F1, F3) = RE, for all I\, Fs such that FIN C
F; CRE i=1,2.

Open problem. Which of the inclusions TT,(FIN,FIN) C
TTo41(FIN,FIN) in Theorem 1 are proper T' (Is this hierarchy infinite T')
i, From the proof of Lemma 4 we obtain

Corollary 1. If L € RE,L C V*card(V) = n, then L €
TTpis(FIN, FIN).

Corollary 2. For every family F' such that F C RE and F is closed under
intersection with regular sets, inverse morphisms, and restricted morphisms (or
right and left derivatives) we have

TT:(FIN,FIN)—F # .

Proof. Take a language L € RE — F, L C {a,b}*, and a type-0 grammar G
for L. (There is such a language: for L' CV* L' € RE, with V = {a31,...,a,},
consider the morphism h : V* — {a,b}* defined by h(a;) = ba’b,1 < i < n.
The language h(L’) cannot be in the family F', because L’ = h=1(h(L’)), which,
by the closure of F' under inverse morphisms, would imply that L' € F, a
contradiction. Take L = h(L’).)

We construct the system I' as in the proof of Lemma 4, starting from G,
then we consider

I = (V’ (All’Rll’Vll)’ . "’(A/% /7’ V7/))

taking

15

() = (A2, Ry, Va), (A5, Ry, Vi) = (As;1, Ra, Va),
(A5, Ry, V) = (As o, B39, Vs o), (Ay, R),VY) = (Ass, Rs s, Vss),
(A5, Rg, Vi) = (A4, R3a,V54), (A6, R, V§) = (A4, Ra, Va),
(A%, Rz, V7) = (As, Rs, Vs),
where (A4;, R;, Vi) and (As j, B3, V3 ;) are components of I' in Lemma 4. Now,
interchange systematically in the axiom and in the splicing rules of I the
strings BAB and BA™*t!B (m is the number of nonterminals of (), that is
take BA™T' B as a ”code” of the axiom and BAB as marker of the string
beginning. Consider also the regular set

/ / !
Ala 1aV1
V/

M = XBAB{a,b}*Y.

Because components 6, 7 in I' have only the role of removing the markers Y, 7’
(whereas 7' is introduced only when replacing a prefix XBAB of a string
XBABwY') and component 1 has the role of collecting terminal strings, we
have

L(I'YN M = X BABL(G)Y.

By a morphism h we erase all symbols X, Y, A, B; the morphism A is restricted
(specifically, it is 5-restricted). (Similarly, we can remove the prefix X BAB and
the suffix ¥ of strings in L(IY) N M by a left and a right derivative. From the
closure properties of F' we obtain L(I') ¢ F (otherwise L(G) € F, which is
contradictory). a

Because there are recursively enumerable languages on the one-letter alpha-
bet which are non-recursive and the family of recursive languages is closed under
left and right derivative, we obtain

Corollary 3. TTg(FIN, FIN) contains non-recursive languages.
Moreover, we have

Lemma 7. TT3(FIN,FIN)—CF # (.

Proof. Consider the TT system

I'=(V, (A1, R, V1), (Az, B2, V3), (A3, R3, V3)),
with

V=A{a,be d e, [},
Ay = {cbac, fd, fe, df, ef},
Ry = {#acSf#d, d#t fScta, d#tfSctb,
#bcS e, e fSeta, e [Sc#b},
Vi ={a,b, e},
Ay = {ed®f, fe},
Ry = {ca’#fSdfta, ca’# [Sd#b, atdSf#c, b#dSf#c),

16

VZ = {Cl, ba d}a

As = {ebf, fe},
Rz = {cb# fSe#ta, afteSfic},
Vs ={a,e}.

We obtain

L(T)Nebate = {cba® ¢ | n > 1}.

Indeed, let us take a string of the form ca’ba’c,i + j > 1 (initially we have
i=20,j =1). The following operations are possible in tube 1:

(caibaj_1|ac,f|d) Fq (caibaj_ld, fae), for j > 1,
(calbe, fle) Fa (ca'e, fbe), for j = 0.

Moreover, in any string ca’ba’c or ca’ba’ ~'d or ca’e as above, the left-hand
occurrence of ¢ can be replaced either by d or by e.

After removing both occurrences of ¢, no splicing on the obtained string can
be done. If a string contains occurrences of both ¢ and d, ¢ and e, or d and e,
it cannot be moved from tube 1. We move to tube 2 the strings of the form
da'ba’~1'd and to tube 3 the strings of the form ea'e.

In tube 1, the strings fac, fbe can enter splicings of the forms

(f|ac, f|d) '_1 (fda fClC),
(f|bC, f|6) |_4 (fea fbc)a

hence no new string is produced in this way. The same for the strings obtained
by splicings using rules in R; replacing the left-hand symbol ¢ by d or by e.
In tube 2, a string da’ba’ ~'d will enter splicings of the form

(ca®|f,d|a'ba’ ~1a) F, (ca’t?bal “ta, df), for a € {c,d},
where 7 is one of the first two rules in R», depending on whether ¢ > 0 or ¢ = 0,
(aa®ba? ~|d, fle) by (aa®ba* e, fd), for o € {c,d},

k=1¢or k=1i+2, and r being one of the last two rules in R», depending on
the value of j.

After replacing both occurrences of d by ¢, no further splicing can be per-
formed in tube 2, and the string is transmitted to tube 1. In this way, we pass
from ca’bal ¢ to ca’t?bal~'c. Continuing in this way we can produce ca’t? be.

In tube 3, a string ea’e is transformed into cba’c, which is transmitted to
tube 1 (therefore we pass from ca’be to cba’. This makes now possible the
interplay of tubes 1 and 2, doubling the number of occurrences of the symbol a.

In conclusion, because we start from chac, we can pass from ca’be to cba’c
and from cba’c to ca®be, iteratively, hence we can produce all strings of the

17

form cba®"¢,n > 0. Conversely, all the strings present in tube 1 during T
computations and which are of the form cbalc,t > 1, have t = 27 for some
n > 0, which completes the proof. a

Because they show a nice regularity of relationships between families in
Chomsky hierarchy and the hierarchy of TT families, we collect the results
in Lemmas 6, 7 and in Corollary 3 in a theorem.

Theorem 2. TTy(FIN,FIN) — REG # 0, TT3(FIN,FIN) — CF #
0, TTo(FIN,FIN) — CS # 0.

Related to the above mentioned open problem is the question whether the
bounds 3, 6 in Theorem 2 can be improved or not. Because the generative power
of TT systems proves to be so large, it would be also of interest to consider
particular cases, maybe inspired from the theory of PC grammar systems, able,
for instance, to generate only regular or only context-free languages.

6. The existence of universal TT systems

We understand the notion of a universal TT system in the same sense as for
Turing machines (and other equivalent classes of algorithms): to fix all but one
components of a system and, giving an arbitrary system, to encode it on the non-
fixed component of the universal one in such a way that this particularization
of the universal system can simulate the arbitrarily given system.

Examining the construction of the TT system ' in the proof of Lemma 4,
we see that this system depends on the elements of the starting grammar G'. If
the grammar G is a universal type-0 grammar, then T will be a unwersal TT
system.

A universal type-0 grammar is a construct Gy = (Ny, T, —, Py), where
Nypr is the nonterminal alphabet, T is the terminal alphabet, Py is the set of
rewriting rules; given any grammar G = (N, T,S’, P), for a special encoding
w(G) of G, the grammar Gy, = (Ny, T, w(G), Py) is equivalent with G, that is
L(G) = L(GYy).

A universal type-0 grammar can be obtained from a universal Turing ma-
chine [17], using the standard passing from Turing machines to Chomsky gram-
mars. A direct construction of a universal type-0 grammar can be found in

This suggests the following definition: a universal TT system for a given
alphabet T is a construct I'y = (Vir, (A1 v, Rio, Vip), ..., (Ao, Bav, Vau))
with Vi y = T', with the components as in a T'T system, all of them being fixed,
and with the following property: there is a specified 7,1 < ¢ < n, such that if
we take an arbitrary TT system I', then there 1s a set Apr C V* such that the
system

v=Vu,(A v, R, Viu), ..., (AivUAr, Riv,Viv), ..., (Anu, Rau, Vau))

18

is equivalent with T, that is L(I';;) = L(T).

Otherwise stated, encoding I' as new axioms to be added to the ¢th compo-
nent of 'y, what we obtain is a system equivalent with I'.

i From practical points of view, the main result of our paper is

Theorem 3. For every given alphabet T, there are uniwversal TT systems of
degree card(T) + 8 and of type (FIN,FIN).

Proof. Start the construction of the system I' in the proof of Lemma 4 from
a universal type-0 grammar as constructed in [3]. According to the proof of
Lemma 4, if T" is given, then the alphabet V of T is fixed,

V=TU{AB X XY, 2,2} 0{Yi |1<i< card(T)+2}.

Similarly, all other components of I' are fixed. Denote by 'y the obtained
system. Because Gy contains no axiom, the axiom X BA"T!BBABY of the
component A, of I'y will be omitted, and this 1s the place where we will add
the new axioms, encoding a given TT system.

More precisely, given an arbitrary TT system, 'y, in view of Theorem 1,
there is a type-0 grammar Gy = (N, T, S, P) such that L(T'g) = L(Gy). Take
the code of Gy, a string w(Gy) constructed as in [3], and add to A; the set
Ar, = {XBA™T!Bw'(Go)Y'},, where w'(Gy) is obtained from w(Gy) by re-
placing each nonterminal Z; with the ”code” BA!B, as in the proof of Lemma
4. What we obtain is a system I'f; such that L(I'};) = L(Go). Indeed, for
Gy = (Nu, T, w(Gy), Py) we have L(Gy) = L(Go). From the construction in
the proof of Lemma 4 we have L(Gy;) = L(I'};). As Gy is equivalent with the
arbitrarily given TT system T', we have L(I'y;) = L(T'). This proves that T'y is
universal, indeed. a

Observe that the ”"program” of the particular TT system I' introduced in
the universal TT system (which behaves like a computer) consists of only one
string, added as an axiom of the second component of the universal system.

The problem formulated after Theorem 1 can be reformulated for the uni-
versal systems: can we bound the degree of a universal TT system I' Another
(practical) question is to build a universal TT system in a direct way, not using
the construction in [3] for universal type-0 grammars (and making the universal
TT system able to simulate any Turing machine, directly, not any TT system,;
this would be closer to the idea of a DNA computer, which is supposed to run
arbitrary algorithms, not necessarily encoded as TT systems).

Acknowledgement. Thanks are due to Z. Fulop, for very useful remarks
about an earlier version of the paper.

19

References

(1]

[2]

L. M. Adleman, Molecular computation of solutions to combinatorial prob-

lems, Science, 226 (Nov. 1994), 1021 - 1024.

L. M. Adleman, On constructing a molecular computer, Manuscript in
circulation, January 1995.

C. Calude, Gh. Paun, Global syntax and semantics for recursively enumer-
able languages, Fundamenta Informatica, 4, 2 (1981), 254 — 254.

E. Csuhaj-Varji, J. Dassow, J. Kelemen, Gh. Pdun, Grammar Systems.
A Grammatical Approach to Distribution and Cooperation, Gordon and
Breach, London, 1994.

K. Culik IT, T. Harju, Splicing semigroups of dominoes and DNA, Discrete
Appl. Math., 31 (1991), 261 — 277.

R. Freund, L. Kari, Gh. Paun, DNA computing based on splicing: the
existence of universal computers, submitted, 1995.

T. Head, Formal language theory and DNA: an analysis of the generative
capacity of specific recombinant behaviors, Bull. Math. Biology, 49 (1987),
737 — 759.

T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics,
chapter 8 in volume 2 of Handbook of Formal Languages (G. Rozenberg, A.
Salomaa, eds.), in preparation.

R. J. Lipton, Speeding up computations via molecular biology, Manuscript
in circulation, December 1994.

R. J. Lipton, DNA solution of hard computational problems, Science, 268
(April 1995), 542 — 545.

Gh. Paun, Splicing. A challenge for formal language theorists, Bulletin of
the FATCS, 57 (1995).

Gh. Paun, On the splicing operation, Discrete Appl. Math., to appear.

Gh. Paun, Regular extended H systems are computationally universal, J.
Inform. Process. Cybern., EIK, to appear.

Gh. Paun, G. Rozenberg, A. Salomaa, Computing by splicing, submitted,
1995.

Gh. Paun, L. Santean, Parallel communicating grammar systems: the reg-
ular case, Ann. Univ. Buc., Matem.-Inform. Series, 38, 2 (1989), 55 — 63.

20

[16] D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 1995.

[17] A. M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc., Ser. 2, 42 (1936), 230 — 265; a
correction, 43 (1936), 544 — 546.

[18] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

21

