
Test Tube Distributed SystemsBased on Splicing1Erzs�ebet CSUHAJ-VARJ�UComputer and Automation InstituteHungarian Academy of SciencesKende utca 13 { 17, 1111 - Budapest, HungaryLila KARIDepartment of Mathematics and Computer ScienceUniversity of Western OntarioLondon, Ontario, N6A 5B7 CanadaGheorghe P�AUN2Institute of Mathematics of the Romanian AcademyPO Box 1 { 764, 70700 Bucure�sti, RomaniaAbstract. We de�ne a symbol processing mechanismwith the com-ponents (test tubes) working as splicing schemes in the sense of T.Head and communicating by redistributing the contents of tubes (ina similar way to the separate operation of Lipton-Adleman). (Thesesystems are similar to the distributed generative mechanisms calledParallel Communicating Grammar Systems.) Systems with �niteinitial contents of tubes and �nite sets of splicing rules associated toeach component are computationally complete, they characterize thefamily of recursively enumerable languages. The existence of univer-sal test tube distributed systems is obtained on this basis, hence thetheoretical proof of the possibility to design universal programmablecomputers with the structure of such a system.Keywords. DNA computing, Parallel communicating grammarsystems, Turing machines, universality1Research supported by the Academy of Finland, Project 11281, the Hungarian Scienti�cResearch Fund OTKA grant no. T017105, and grant OGP0007877 of the Natural Sciencesand Engineering Research Council of Canada2All correspondence to this author. Current address: Turku Centre for Computer Sci-ence TUCS, Data City, Lemminkaisenkatu 14 A, 4th
oor, FIN - 20520, Finland; E-mail:paun@sara.utu.� 1

1. IntroductionThis paper can be seen as a continuation of some previous papers investi-gating the power of the splicing operation and proving that certain classes ofH systems are computationally complete (they have the same power as Turingmachines) { see [11], [8] and their references. However, a new idea is broughthere into the DNA computing area, that of distributed computing, in the senseof grammar systems theory (see [4]). More precisely, we introduce here dis-tributed splicing systems working in a way similar to parallel communicating(PC) grammar systems of [15]. In this way we bring together the idea of splic-ing, in the sense of [7], that of test tube computing, in the sense of [2], [9], andthat of a PC grammar system.The splicing operation, as introduced in [7], is a model of the recombinantbehavior of DNA under the in
uence of restriction enzymes and lygases. Onegives pairs of the form (u1; u2); (u3; u4), encoding the sites where enzymes cancut the DNA sequences, and pairs of such pairs { in total we have in thisway quadruples (u1; u2;u3; u4) { specifying the possibility to paste substringsobtained after such a cutting. Thus, from two strings x; y having u1u2; u3u4 assubstrings, that is x = x1u1u2x2; y = y1u3u4y2, we �rst obtain the substringsx1u1; u2x2; y1u3; u4y2, then we can build any of the strings x1u1u2x2, x1u1u4y2,y1u3u4y2, y1u3u2x2. The second and the last string are (possibly) new. We saythat we have spliced x; y and we have obtained w and z, where w = x1u1u4y2;z = y1u3u2x2.The splicing operation has been investigated in a series of papers; we referto [11] and to [8] for bibliographical information (and surveys of results). Forour purposes, important is the notion of an extended H system, a generativemechanism based on splicing, introduced in [14], and which turned out to becomputationally complete, its power is equal to the power of Turing machinesfor certain rather weak variants; see [13], [6]. In particular, in [6] one shows thatuniversal H systems exist, with �nite components (universal here is understoodin the same sense as for universal Turing machines: systems with all but onecomponent �xed and which can behave as any particular H system when a codeof the particular one is added to the non-�xed component).In 1994, Adleman has shocked the computer science community by solving(a small instance of) the Hamiltonian path problem in a graph by DNA ma-nipulation in a test tube. Extensions of this procedure were proposed by [10],[9]. Continuing the ideas in [9], [2] proposes a sort of "programming language"(a formalism) for writing algorithms dealing with test tubes. In fact, the basicprimitive of this formalism is the tube, a set (or a multiset, with multiplicitesassociated to its elements) of strings over a given alphabet. The basic oper-ations of this formalism describe operations with tubes: merge (put togetherthe contents of two tubes), separate (produce two tubes from one, according tospeci�ed criteria), amplify (duplicate a tube), check whether a tube is empty ornot. We shall use here mainly the separate operation, with a speci�c de�nition.2

The parallel communicating (PC) grammar systems consist of several usualChomsky grammars, working synchronously, each one on its own sentential form(initially equal to the axiom) and communicating by request in the followingway: there are special symbols used only for starting communications (andcalled query symbols); when such a symbol is introduced by a component iand pointing to another component j, then the current sentential form of thecomponent j is transmitted to component i. Thus, there are two types of stepsof the work of such a system: rewriting steps (componentwise derivations) andcommunication steps. One component of the system is designed as the master,and the language generated by it, with or without the help of other components,is the language generated by the system. Details can be found in [4].Here we consider a sort of PC grammar systems whose components are tubesin the sense of [2], working as splicing systems, and communicating their con-tents in the sense of the separate operation; more speci�cally, the result of theiterated splicing of the contents of each tube is redistributed to all tubes ac-cording to certain selector alphabets associated to the tubes: a string consistingof symbols in a selector alphabet will be transmitted to the tubes having thatselector associated with them. Again one tube is designed as the master and itscontents put together is the result of the system "computation". We call sucha system a test tube distributed system, shortly, a TT system.The large power of the splicing operation is con�rmed also in this framework:TT systems with �nite components characterize the recursively enumerable lan-guages; more precisely, n+8 components are enough for generating all languagesover an alphabet with n symbols (whereas systems with two components cangenerate non-regular languages, systems with three components can generatenon-context-free languages, and six components are enough for generating non-recursive languages). The proof directly entails the existence of universal TTsystems. Therefore, a result as in [6] is obtained for this new mechanism: onecan design universal programmable DNA computers based on splicing. In ourcase, the "computer" is a TT parallel communicating system able to simulateany other TT system (any Turing machine), after introducing its "program" inthe "computer" as an axiom of a certain component. Of course, this is onlya theoretical result, the possibility to practically implement the operations onwhich a TT system is based { splicing and separation { is a technical/biologicalquestion.2. Basic de�nitions; the splicing operationWe use the following formal language notations: V � is the free monoid gen-erated by the alphabet V , � is the empty word, FIN, REG, CF, CS, RE arethe families of �nite, regular, context-free, context-sensitive, and recursivelyenumerable languages, respectively. For general formal language theory prereq-uisites we refer to [18]; for grammar systems area we refer to [4].3

A splicing rule (over an alphabet V) is a string r = u1#u2$u3#u4, whereui 2 V �; 1 � i � 4, and #; $ are special symbols not in V . For such a rule rand the strings x; y; w; z 2 V � we write(x; y) `r (w; z) i� x = x1u1u2x2; y = y1u3u4y2;w = x1u1u4y2; z = y1u3u2x2;for some x1; x2; y1; y2 2 V �:We say that we have spliced x; y at the sites u1u2; u3u4, respectively, obtain-ing the strings w; z; x; y are called the terms of the splicing. When understoodfrom the context, we omit r from `r .A splicing scheme (or an H scheme) is a pair � = (V;R), where V is analphabet and R is a set of splicing rules (over V). For a language L � V �, wede�ne �(L) = fw 2 V � j (x; y) `r (w; z) or (x; y) `r (z; w);for some x; y 2 L; r 2 Rg:(By de�nition, �(L) = ; if L = ; or R = ;.) Then, we de�ne��(L) = [i�0�i(L);for �0(L) = L;�i+1(L) = �i(L) [�(�i(L)); i � 0:Therefore, ��(L) is the smallest language containing L and closed under thesplicing operation.An extended H system is a quadruple
 = (V; T;A;R);where V is an alphabet, T � V (the terminal alphabet), A � V � (the set ofaxioms), and R � V �#V �$V �#V �. The pair � = (V;R) is called the underlyingH scheme of
. The language generated by
 is de�ned byL(
) = ��(A) \ T �:An H system
 = (V; T;A;R) is said to be of type F1; F2, for two families oflanguages F1; F2, if A 2 F1; R 2 F2.We denote by EH(F1; F2) the family of languages generated by extended Hsystems of type (F1; F2).An H system
 = (V; T;A;R) with V = T is said to be non-extended; thefamily of languages generated by non-extended H systems of type (F1; F2) isdenoted by H(F1; F2). Obviously, H(F1; F2) � EH(F1; F2).4

The splicing operation is introduced in [7] for �nite sets of rules; the caseof arbitrarily large sets of splicing rules is considered in [12]; the extended Hsystems were introduced in [14]. Details can be found in [8], [11].For instance, in [5], [16] it is proved thatH(FIN;FIN) � REG:(The inclusion is, in fact, proper.) Using this relation, in [14] it is proved thatEH(FIN;FIN) = REG:Moreover, in [13] it is proved that the extended H systems with �nite sets ofaxioms and regular sets of splicing rules are computationally complete, that isEH(FIN;REG) = RE:Therefore, such systems are as powerful as the Turing machines (and any otherclass of equivalent algorithms).3. Test tube systemsA test tube (TT, for short) system (of degree n; n � 1) is a construct� = (V; (A1; R1; V1); : : : ; (An; Rn; Vn));where V is an alphabet, Ai � V �, Ri � V �#V �$V �#V �, and Vi � V , for each1 � i � n.Each triple (Ai; Ri; Vi) is called a component of the system, or a tube; Ai isthe set of axioms of the tube i, Ri is the set of splicing rules of the tube i, Vi isthe selector of the tube i.We denote B = V � � n[i=1V �i :The pair �i = (V;Ri) is the underlying H scheme associated to the compo-nent i of the system.An n-tuple (L1; : : : ; Ln); Li � V �; 1 � i � n, is called a con�guration of thesystem; Li is also called the contents of the ith tube.For two con�gurations (L1; : : : ; Ln); (L01; : : : ; L0n), we de�ne(L1; : : : ; Ln) =) (L01; : : : ; L0n) i�L0i = n[j=1(��j (Lj) \ V �i) [(��i (Li) \B);for each i; 1 � i � n:5

In words, the contents of each tube is spliced according to the associated setof rules (we pass from Li to ��i (Li); 1 � i � n), and the result is redistributedamong the n tubes according to the selectors V1; : : : ; Vn; the part which cannotbe redistributed (does not belong to some V �i ; 1 � i � n) remains in the tube.Because we have imposed no restrictions over the alphabets Vi, for example,we did not supposed that they are pairwise disjoint, when a string in ��j (Lj)belongs to several languages V �i , then copies of this string will be distributed toall tubes i with this property.A computation (of length k; k � 0) in � is a sequence of con�gurationsC = f(L(t)1 ; : : : ; L(t)n) j 0 � t � kgsuch that(i) (L(0)1 ; : : : ; L(0)n) = (A1; : : : ; An);(ii) (L(t)1 ; : : : ; L(t)n) =) (L(t+1)1 ; : : : ; L(t+1)n); with respect to �;for each t; 0 � t � k � 1:We denote by Ck(�) the set of all computations of length k; k � 0, of �, andby C�(�) the set of all possible computations,C�(�) = [k�0Ck(�);where C0(�) = f(A1; : : : ; An)g: The ith result of a computation C =f(L(t)1 ; : : : ; L(t)n) j 0 � t � kg is the set of all strings which were present inthe tube i, that is �i(C) = [0�t�kL(t)i :One of the components of a TT system � is designed as the master one andthe union of its contents in all possible computations is the result of the systemcomputations. By convention, we consider that the �rst tube is the master,hence the result of the work of �, the language generated by �, isL(�) = [C2C�(�) �1(C):We can also write, in a way closer to the style of formal language theory,L(�) = fw 2 V � j w 2 L(t)1 for some(A1; : : : ; An) =)� (L(t)1 ; : : : ; L(t)n); t � 0g;where =)� is the re
exive and transitive closure of the relation =).6

Given two families of languages, F1; F2, we denote by TTn(F1; F2) the familyof languages L(�), for � = (V; (A1; R1; V1); : : : ; (Am; Rm; Vm)), with m � n,Ai 2 F1; Ri 2 F2; for each i; 1 � i � m. (We say that � is of type (F1; F2).)When n is not speci�ed, we replace it by �, that is we writeTT�(F1; F2) = [n�1TTn(F1; F2):A TT system as above has a structure very similar to that of a parallelcommunicating grammar system. The rewriting steps in a PC grammar systemcorrespond here to the splicing phases, that is to passing from L(t)i to ��(L(t)i),whereas the communication steps correspond to the redistribution of ��(L(t)i)to the tubes according to the selectors V1; : : : ; Vn. However, in a PC grammarsystem the communication is done on request: the receiving component startsthe communication, by introducing a query symbol; here the communication isautomatically performed after every splicing step. Note that a splicing step is aniterated one (maximal as regards the produced output), not a single rewritingstep as in a PC grammar system.Also note that in some sense we have used here three of the basic operationsin Adleman's "programming language" ([2], [9]): the separate operation whenredistributing the contents of a tube according to the selectors, the merge oper-ation when constituting the new tube contents, as well as the amplify operation,when copies of the same string is sent to several tubes at the same time. Thesystems we obtain prove to be computationally complete, equivalent in powerto Turing machines. On the other hand, we use a basic new ingredient: thesplicing operation, which we already know that it is quite powerful ([13], [6],etc.).4. An exampleWe illustrate the de�nitions above with an example discussed in some details.Consider the system� = (V; (A1; R1; V1); : : : ; (A4; R4; V4));with V = fa; b; c; d; e; f; gg;A1 = fcabd; gbeg; R1 = fb#d$g#beg; V1 = fa; b; c; dg;A2 = ffagg; R2 = ffa#g$c#ag; V2 = fa; b; c; eg;A3 = fgdg; R3 = fb#e$g#dg; V3 = fa; b; e; fg;A4 = fcgg; R4 = fc#g$f#ag; V4 = fa; b; d; fg:We start from the con�guration(A1; A2; A3; A4) = (fcabd; gbeg; ffagg; fgdg; fcgg):7

Because we can perform only one splicing, in tube 1, (cabjd; gjbe) ` (cab2e; gd),we have ��1(A1) = A1 [fcab2e; gdg;��2(A2) = A2;��3(A3) = A3;��4(A4) = A4:(The vertical bars in (cabjd; gjbe) are added for an easier readability.) The stringcab2e has to be transmitted to the second tube, gd will remain in tube 1, hencethe next con�guration is(L(1)1 ; L(1)2 ; L(1)3 ; L(1)4) == (fcabd; gbe; gdg; fcab2e; fagg; fgdg; fcgg):Now, tube 1 can repeat the previous splicing, but also a splicing in tube 2 ispossible: ��1(L(1)1) = L(1)1 [fcab2eg;��2(L(1)2) = L(1)2 [ffa2b2e; cgg;��3(L(1)3) = L(1)3 ;��4(L(1)4) = L(1)4 :The string cab2e will be again transmitted from tube 1 to tube 2, but tube 2contains already this string. The string fa2b2e will be moved from tube 2 totube 3, hence (L(2)1 ; L(2)2 ; L(2)3 ; L(2)4) == (fcabd; gbe; gdg; fcab2e; fag; cgg; ffa2b2e; gdg; fcgg):We obtain ��1(L(2)1) = L(2)1 [fcab2eg;��2(L(2)2) = L(2)2 [ffa2b2eg;��3(L(2)3) = L(2)3 [ffa2b2d; geg;��4(L(2)4) = L(2)4 ;hence (L(3)1 ; L(3)2 ; L(3)3 ; L(3)4) == fcabd; gbe; gdg; fcab2e; fag; cgg; ffa2b2e; gd; geg; ffa2b2d; cgg):8

Therefore, ��1(L(3)1) = L(3)1 [fcab2eg;��2(L(3)2) = L(3)2 [ffa2b2eg;��3(L(3)3) = L(3)3 [ffa2b2dg;��4(L(3)4) = L(3)4 [fca2b2d; fgg;hence(L(4)1 ; L(4)2 ; L(4)3 ; L(4)4) == (fcabd; ca2b2d; gbe; gdg; fcab2e; fag; cgg; ffa2b2e; gd; geg; ffa2b2d; cg; fgg:One can see that the system works as follows:{ The strings containing the symbol g are never moved from a tube toanother one.{ The �rst component adds one b to strings of the form caibjd, and replacesd by e. The obtained string is transmitted to the second tube, which addsone a and replaces c by f . The obtained string is passed to the third tubewhich replaces e by d. The result is a string of the form fai+1bj+1d, henceit will be transmitted to tube 4. Here, f is replaced by c. In this way, wepass from caibjd to cai+1bj+1d, hence the process can be iterated. Becausewe start from cabd, we can obtain in this way all strings canbnd; n � 1.{ All the splicing rules involve a symbol g, but no one of the strings contain-ing g and not being an axiom (gd; cg; ge; fg in tubes 1, 2, 3, 4, respectively)can be used in a splicing. Thus, at every splicing we have to use one ofthe axioms gbe; fag; gd; cg, that is we cannot splice two strings obtainedat a previous splicing and not containing the symbol g. In this way, thestrings of the form canbmd obtained in the �rst tube have n = m.Consequently, L(�) \ ca+b+d = fcanbnd j n � 1g;which is not a regular language.Notice that � is of type (FIN;FIN), hence we have obtainedTT4(FIN;FIN)� REG 6= ;:(We shall improve this result below.) Compare this result with the relationH(FIN;FIN) � REG [5], [16]; we conclude that the distributed mode ofworking in a TT system, the cooperation of the components, is productive, itstrictly increases the power of H systems.In fact, the TT systems with �nite components are computationally com-plete: 9

5. Characterizing recursively enumerable languagesThe following inclusions are obvious:Lemma 1. (i) TTn(F1; F2) � TTn+1(F1; F2); for all n � 1 and F1; F2.(ii) TTn(F1; F2) � TTn(F 01; F 02); for all n � 1 and F1 � F 01; F2 � F 02.>From Turing-Church thesis (or by a direct proof), we getLemma 2. TT�(F1; F2) � RE, for all F1; F2 � RE.By de�nition, we also haveLemma 3. H(F1; F2) = TT1(F1; F2), for all F1; F2.The following relation is the core result of this paper.Lemma 4. RE � TT�(FIN;FIN):Proof. Take a type-0 grammar G = (N; T; S; P) with T = fa1; : : : ; angand N = fZ1; : : : ; Zmg; Z1 = S. Consider the new symbols A;B and replacein each rule of P each occurrence of Zi by BAiB; 1 � i � m. We obtain aset P 0 of rules such that S =)� w;w 2 T �, according to the grammar G ifand only if BAB =)� w using the rules in P 0. For uniformity, we denoteA = an+1; B = an+2. Construct the TT system� = (V; (A1; R1; V1); (A2; R2; V2); (A3;1; R3;1; V3;1); : : : ; (A3;n+2; R3;n+2; V3;n+2);(A4; R4; V4); (A5; R5; V5); (A6; R6; V6); (A7; R7; V7));with V = T [fA;B;X;X 0; Y; Z; Z 0g [fYi j 1 � i � n+ 2g;and A1 = ;;R1 = ;;V1 = T;A2 = fXBAm+1BBABY;Z 0Zg[fZvY j u! v 2 P 0g[fZYi j 1 � i � n + 2g;R2 = f#uY $Z#vY j u! v 2 P 0g[f#aiY $Z#Yi j 1 � i � n+ 2g[fZ 0#Z$XBAm+1B#g;V2 = T [fA;B;X; Y g;A3;i = fX 0aiZg;R3;i = fX 0ai#$X# j 1 � i � n+ 2g;V3;i = T [fA;B;X; Yig; for 1 � i � n+ 2;10

A4 = fZY g;R4 = f#Yi$Z#Y j 1 � i � n+ 2g;V4 = T [fA;B;X 0g [fYi j 1 � i � n+ 2g;A5 = fXZg;R5 = fX#Z$X 0#g;V5 = T [fA;B;X 0; Y g;A6 = fZZg;R6 = f#Y $ZZ#g;V6 = T [fY; Z 0g;A7 = fZZg;R7 = f#ZZ$Z 0#g;V7 = T [fZ 0g:Let us examine the work of �:The �rst component only selects the strings produced by the other com-ponents and which are terminal according to G: No such terminal string canenter a splicing, because all rules in R2 { R7 involve symbols X;Y;X 0; Z; Yi;for 1 � i � n: (When speaking about R3 we mean the union of all setsR3;i; 1 � i � n.)In the initial con�guration (A1; : : : ; A7); only the second component canexecute a splicing. There are three possibilities: to use a rule of the form#uY $#vY , for u ! v 2 P 0 (we say that this is a splicing of type 1), a ruleof the form #aiY $Z#Yi, for 1 � i � n + 2 (a splicing of type 2), or the ruleZ 0#Z$XBAm+1B# (a splicing of type 3).Consider the general case, of having in tube 2 a string XwY; with w 2(T [fA;Bg)�BAm+1B(T [fA;Bg)� (initially, w = BAm+1BBAB). We havethree possible splicings:1. (Xw1juY; ZjvY) `1 (Xw1vY; ZuY); for ! v 2 P 0 providing that w =w1u;2. (Xw1jaiY; ZjYi) `2 (Xw1Yi; ZaiY); 1 � i � n+ 2; when w = w1ai;3. (Z 0jZ;XBAm+1Bjw1Y) `3 (Z 0w1Y;XBAm+1BZ); for w = BAm+1Bw1:The string Xw1vY is of the same form with Xw1uY and it will remain intube 2, entering new splicings of one of the three types. Clearly, the passingfrom Xw1uY to Xw1vY corresponds to using the rule u! v in P 0 on a su�xof the string bracketed by X; Y:The string ZuY will remain in tube 2, too. Such a string ZuY can en-ter a splicing in three cases: (i) if ZuY is already an axiom, hence noth-ing new appears in this way, (ii) as the �rst term of a splicing of the form(Zu1ju0Y; Zjv0Y) `1 (Zu1v0Y; Zu0Y), for u = u1u0 and u0 ! v0 2 P 0; one11

obtains two strings of the same form ZxY which will remain in tube 2, (iii)(Zu1jaiY; ZjYi) `2 (Zu1Yi; ZaiY), for u = u1ai; 1 � i � n+ 2; the string Zu1Yicannot enter new splicings and cannot be transmitted to another tube. Afterany sequence of such splicings, the obtained strings will still be of the form ZxYhence they will remain in tube 2 and will enter either "legal" splicings, whenthey are axioms, or splicings still producing "useless" strings ZyY:Therefore, after a series of splicings of type 1, a splicing of type 2 willbe eventually performed in tube 2, producing strings of the form Xw1Yiand ZaiY: The second string behaves exactly as ZuY discussed above. Ifa string XwYi enters a new splicing in tube 2, this can be only of type 3,(Z 0jZ;XBAm+1Bjw2Yi) `3 (Z 0w2Yi; XBAm+1BZ), for w1 = BAm+1Bw2.The string Z 0w2Yi cannot enter new splicings in tube 2 and cannot be trans-mitted to another tube. The case of XBAm+1BZ will be discussed below. Anystring Xw1Yi is moved from tube 2 to the corresponding tube (3; i), where wehave to perform (X 0aijZ;Xjw1Yi) ` (X 0aiw1Yi; XZ):The second string, XZ; remains in tube (3; i) and it will enter only splicingsof the form (X 0aijZ;XjZ) ` (X 0aiZ;XZ);hence producing nothing new. The �rst string cannot enter new splicings intube (3; i), it will be transmitted to tube 4, where the only possible splicing is(X 0aiw1jYi; ZjY) ` (X 0aiw1Y; ZYi):Again the second string remains in the tube and the possible splicings usingit will produce nothing new, whereas the �rst string will be moved into tube 5.There we obtain (XjZ;X 0jaiw1Y) ` (Xaiw1Y;X 0Z):The second string remains in tube 5, and it produces nothing new, the �rstone has to be communicated to tube 2. We started from Xw1aiY and wereturned to tube 2 the string Xaiw1Y: A symbol from the right-hand end of thestring bracketed by X;Y has been moved to the left-hand end. In this way thestring bracketed by X; Y can be circularly permuted as long as we want. In thisway, we can "rewind" the string till having as a su�x the left-hand member ofany rule in P 0 we want to simulate by a rule in R2 of the form #uY $Z#vY:On the other hand, if we start from a string XwBAjBY , we have to usetubes 2, (3; n+2) or (3; n+1), 4, 5, iteratively, until obtaining XBAjBwY : norule of P 0 can be simulated in tube 2 after removing the rightmost occurrenceof B in XwBAjBY , and, similarly, we cannot use the rule Z 0#Z$XBAm+1B#in R2 after removing the rightmost occurrence of B in XwBAjBY . Becausethe substring BAm+1B is always present (and exactly one copy of it is presentas long as we do not use the rule Z 0#Z$XBAm+1B# in R2); we know in everymoment where the "actual beginning" of the string is placed. In conclusion,12

using splicings of type 1 and the rewind technique made possible by the abovedescribed passing through tubes 2, 3, 4, 5, we can simulate every derivationaccording to P 0.Conversely, exactly strings Xw1BAm+1Bw2Y can be obtained in this waywhich corresponds to strings w2w1 which can be obtained starting from BABand using rules in P 0.Consider now the splicing of type 3 in tube 2. If the string XBAm+1BZ isused in further splicings, they are of the form(Z0jZ;XBAm+1BjZ) ` (Z 0Z;XBAm+1BZ);therefore no new string is obtained in this way.The �rst string produced by a splicing of type 3, Z 0w1Y; will be transmittedto tube 6; here we have only one possibility(Z 0w1jY; ZZj) ` (Z 0w1; ZZY):If ZZY will enter new splicings, they are of the form(Z 0xjY; ZZjY) ` (Z 0xY; ZZY);(ZZjY; ZZjY) ` (ZZY;ZZY);hence no new string is obtained.The string Z 0w1 cannot enter new splicings in tube 6. If w1 2 T � (and onlyin this case), it will be moved in tube 7, where we perform(jZZ;Z 0jw1) ` (w1; Z 0ZZ):The string w1 is terminal. It will be transmitted to all tubes { including the�rst one. No splicing can be done on a terminal string. As we have seen above,such a terminal string w1 is a string in L(G):If the string Z 0w1Y will enter new splicings in tube 2, they can be of forms1 and 2: (Z 0w2juY; ZjvY)) `1 (Z 0w2vY; ZuY); for u! v 2 P 0; w1 = w2u;(Z 0w2jaiY; ZjYi) `2 (Z 0w2Yi; ZaiY); for 1 � i � n;w1 = w2ai:The behavior of ZuY; ZaiY; Z 0w2Yi is known, similar strings appeared inthe previous discussion. The string Z 0w2vY can be obtained by per-forming �rst (XBAm+1Bw2juY; ZjvY) `1 (XBAm+1Bw2vY; ZuY) and then(Z 0jZ;XBAm+1Bjw2vY) `3 (Z 0w2vY;XBAm+1BZ), hence also this stringis a "legal" one. No parasitic string can reach the �rst tube, consequently,L(�) = L(G): 2The above proof is based on the same idea as the proof of the inclusionRE � EH(FIN;REG) in [13]. The same idea is used in [6] in order to prove13

that every type-0 grammar can be simulated by an extended H system of type(FIN;FIN), providing that some control on the use of the splicing rules isconsidered. Namely, a random context-like control is used: each splicing rulehas associated certain symbols and it can be applied to a pair of strings onlywhen the associated symbols appear in these strings (the permitting contextvariant), or they do not appear (the forbiding context variant). Therefore, bothhere and in [6] we have to pay for the passing fromREG to FIN , as type of thesets of rules, by imposing some regulation on the rule using. In view of the resultin [5], [16], this cannot be avoided: extended H systems of type (FIN;FIN)generate only regular languages.On the other hand, the condition we use here for regulation { the separationof strings according to their membership to alphabets V1; : : : ; Vn { althoughsimilar, is weaker than the random context condition: a string w will be trans-mitted to tube i when w 2 V �i without knowing that all symbols in Vi arepresent in w (but knowing indeed that no symbol outside Vi appears in w). An-other essential di�erence between a TT system and an extended H system withrandom context conditions is that we perform here an iterated splicing in eachtube, thus applying the tube splicing rules as long as we can, even to stringswhich can be transmitted to another tubes. This seems to be more realisticthan checking random context conditions after each single splicing.Moreover, we haveLemma 5. EH(F1; F2) � TT2(F1; F2):Proof. For an extended H systems
 = (V; T;A;R); consider the TT system� = (V; (;; ;; T); (A;R; V)):Obviously, L(
) = L(�) : the second component of � simulates the work of
(the splicing operation, starting from A) and the �rst component simply selectsthe strings in T � produced by the second component. 2Lemma 6. TT2(FIN;FIN)�REG 6= ;:Proof. Consider the TT system� = (fa; b; c; d; eg; (fcabc; ebd; daeg;fb#c$e#bd; da#e$c#ag;fa; b; cg);(fec; ceg; fb#d$e#c; c#e$d#ag; fa; b; dg):We obtain L(�) \ ca+b+c = fcanbnc j n � 1g (�)Indeed, the only possible splicings in the �rst component are(�aibjjc; ejbd) `1 (�aibj+1d; ec); � 2 fc; dg;(daje; cjaibj�) `2 (dai+1bj�; ce); � 2 fc; dg:14

One further occurrence of a and one further occurrence of b can be added inthis way; only when both one a and one b are added, hence the obtained stringis dai+1bj+1d; we can move this string to the second tube. Here the possiblesplicings are (�aibjjd; ejc) `1 (�aibjc; ed); � 2 fc; dg;(cje; djaibj�) `2 (caibj�; de); � 2 fc; dg:Only the string caibjc can be moved to the �rst tube, hence the process canbe iterated. No splicing in tube 1 can involve a string of the form daibjd.Consequently, we have the equality (�); which proves that L(�) is not aregular language. 2Synthesizing the previous lemmas (and using the fact that H(FIN;FIN) �REG = EH(FIN;FIN), strict inclusion), we getTheorem 1.TT1(FIN;FIN) � REG � TT2(FIN;FIN) � TT3(FIN;FIN) � : : :: : : � TT�(FIN;FIN) = TT�(F1; F2) = RE; for all F1; F2 such that FIN �Fi � RE; i = 1; 2:Open problem. Which of the inclusions TTn(FIN;FIN) �TTn+1(FIN;FIN) in Theorem 1 are proper ? (Is this hierarchy in�nite ?)>From the proof of Lemma 4 we obtainCorollary 1. If L 2 RE;L � V �; card(V) = n, then L 2TTm+8(FIN;FIN).Corollary 2. For every family F such that F � RE and F is closed underintersection with regular sets, inverse morphisms, and restricted morphisms (orright and left derivatives) we haveTT7(FIN;FIN)� F 6= ;:Proof. Take a language L 2 RE � F , L � fa; bg�, and a type-0 grammar Gfor L: (There is such a language: for L0 � V �; L0 2 RE, with V = fa1; : : : ; ang,consider the morphism h : V � �! fa; bg� de�ned by h(ai) = baib; 1 � i � n.The language h(L0) cannot be in the familyF , because L0 = h�1(h(L0)), which,by the closure of F under inverse morphisms, would imply that L0 2 F , acontradiction. Take L = h(L0).)We construct the system � as in the proof of Lemma 4, starting from G,then we consider �0 = (V; (A01; R01; V 01); : : : ; (A07; R07; V 07))taking 15

(A01; R01; V 01) = (A2; R2; V2); (A02; R02; V 02) = (A3;1; R3;1; V3;1);(A03; R03; V 03) = (A3;2; R3;2; V3;2); (A04; R04; V 04) = (A3;3; R3;3; V3;3);(A05; R05; V 05) = (A3;4; R3;4; V3;4); (A06; R06; V 06) = (A4; R4; V4);(A07; R07; V 07) = (A5; R5; V5);where (Ai; Ri; Vi) and (A3;j; R3;j; V3;j) are components of � in Lemma 4. Now,interchange systematically in the axiom and in the splicing rules of �0 thestrings BAB and BAm+1B (m is the number of nonterminals of G), that istake BAm+1B as a "code" of the axiom and BAB as marker of the stringbeginning. Consider also the regular setM = XBABfa; bg�Y:Because components 6, 7 in � have only the role of removing the markers Y; Z 0(whereas Z 0 is introduced only when replacing a pre�x XBAB of a stringXBABwY) and component 1 has the role of collecting terminal strings, wehave L(�0) \M = XBABL(G)Y:By a morphism h we erase all symbols X;Y;A;B; the morphism h is restricted(speci�cally, it is 5-restricted). (Similarly, we can remove the pre�x XBAB andthe su�x Y of strings in L(�0) \M by a left and a right derivative. From theclosure properties of F we obtain L(�0) =2 F (otherwise L(G) 2 F , which iscontradictory). 2Because there are recursively enumerable languages on the one-letter alpha-bet which are non-recursive and the family of recursive languages is closed underleft and right derivative, we obtainCorollary 3. TT6(FIN;FIN) contains non-recursive languages.Moreover, we haveLemma 7. TT3(FIN;FIN)�CF 6= ;:Proof. Consider the TT system� = (V; (A1; R1; V1); (A2; R2; V2); (A3; R3; V3));with V = fa; b; c; d; e; fg;A1 = fcbac; fd; fe; df; efg;R1 = f#ac$f#d; d#f$c#a; d#f$c#b;#bc$f#e; e#f$c#a; e#f$c#bg;V1 = fa; b; cg;A2 = fca2f; fcg;R2 = fca2#f$d#a; ca2#f$d#b; a#d$f#c; b#d$f#cg;16

V2 = fa; b; dg;A3 = fcbf; fcg;R3 = fcb#f$e#a; a#e$f#cg;V3 = fa; eg:We obtain L(�) \ cba+c = fcba2nc j n � 1g:Indeed, let us take a string of the form caibajc; i+ j � 1 (initially we havei = 0; j = 1). The following operations are possible in tube 1:(caibaj�1jac; f jd) `1 (caibaj�1d; fac); for j � 1;(caijbc; f je) `4 (caie; fbc); for j = 0:Moreover, in any string caibajc or caibaj�1d or caie as above, the left-handoccurrence of c can be replaced either by d or by e.After removing both occurrences of c, no splicing on the obtained string canbe done. If a string contains occurrences of both c and d, c and e, or d and e,it cannot be moved from tube 1. We move to tube 2 the strings of the formdaibaj�1d and to tube 3 the strings of the form eaie.In tube 1, the strings fac; fbc can enter splicings of the forms(f jac; f jd) `1 (fd; fac);(f jbc; f je) `4 (fe; fbc);hence no new string is produced in this way. The same for the strings obtainedby splicings using rules in R1 replacing the left-hand symbol c by d or by e.In tube 2, a string daibaj�1d will enter splicings of the form(ca2jf; djaibaj�1�) `r (cai+2baj�1�; df); for � 2 fc; dg;where r is one of the �rst two rules in R2, depending on whether i > 0 or i = 0,(�akbaj�1jd; f jc) `r (�akbak�1c; fd); for � 2 fc; dg;k = i or k = i + 2, and r being one of the last two rules in R2, depending onthe value of j.After replacing both occurrences of d by c, no further splicing can be per-formed in tube 2, and the string is transmitted to tube 1. In this way, we passfrom caibajc to cai+2baj�1c. Continuing in this way we can produce cai+2jbc.In tube 3, a string eaie is transformed into cbaic, which is transmitted totube 1 (therefore we pass from caibc to cbaib. This makes now possible theinterplay of tubes 1 and 2, doubling the number of occurrences of the symbol a.In conclusion, because we start from cbac, we can pass from caibc to cbaicand from cbaic to ca2ibc, iteratively, hence we can produce all strings of the17

form cba2nc; n � 0. Conversely, all the strings present in tube 1 during �computations and which are of the form cbatc; t � 1, have t = 2n for somen � 0, which completes the proof. 2Because they show a nice regularity of relationships between families inChomsky hierarchy and the hierarchy of TT families, we collect the resultsin Lemmas 6, 7 and in Corollary 3 in a theorem.Theorem 2. TT2(FIN;FIN) � REG 6= ;; TT3(FIN;FIN) � CF 6=;; TT6(FIN;FIN) �CS 6= ;:Related to the above mentioned open problem is the question whether thebounds 3, 6 in Theorem 2 can be improved or not. Because the generative powerof TT systems proves to be so large, it would be also of interest to considerparticular cases, maybe inspired from the theory of PC grammar systems, able,for instance, to generate only regular or only context-free languages.6. The existence of universal TT systemsWe understand the notion of a universal TT system in the same sense as forTuring machines (and other equivalent classes of algorithms): to �x all but onecomponents of a system and, giving an arbitrary system, to encode it on the non-�xed component of the universal one in such a way that this particularizationof the universal system can simulate the arbitrarily given system.Examining the construction of the TT system � in the proof of Lemma 4,we see that this system depends on the elements of the starting grammar G: Ifthe grammar G is a universal type-0 grammar, then � will be a universal TTsystem.A universal type-0 grammar is a construct GU = (NU ; T;�; PU); whereNU is the nonterminal alphabet, T is the terminal alphabet, PU is the set ofrewriting rules; given any grammar G = (N; T; S0; P); for a special encodingw(G) of G; the grammar G0U = (NU ; T; w(G); PU) is equivalent with G; that isL(G) = L(G0U):A universal type-0 grammar can be obtained from a universal Turing ma-chine [17], using the standard passing from Turing machines to Chomsky gram-mars. A direct construction of a universal type-0 grammar can be found in[3].This suggests the following de�nition: a universal TT system for a givenalphabet T is a construct �U = (VU ; (A1;U; R1;U ; V1;U); : : : ; (An;U ; Rn;U ; Vn;U))with V1;U = T , with the components as in a TT system, all of them being �xed,and with the following property: there is a speci�ed i; 1 � i � n, such that ifwe take an arbitrary TT system �, then there is a set A� � V � such that thesystem�0U = (VU ; (A1;U ; R1;U; V1;U); : : : ; (Ai;U[A�; Ri;U; Vi;U); : : : ; (An;U ; Rn;U ; Vn;U))18

is equivalent with �, that is L(�0U) = L(�).Otherwise stated, encoding � as new axioms to be added to the ith compo-nent of �U , what we obtain is a system equivalent with �.>From practical points of view, the main result of our paper isTheorem 3. For every given alphabet T, there are universal TT systems ofdegree card(T) + 8 and of type (FIN;FIN).Proof. Start the construction of the system � in the proof of Lemma 4 froma universal type-0 grammar as constructed in [3]. According to the proof ofLemma 4, if T is given, then the alphabet V of � is �xed,V = T [fA;B;X;X 0; Y; Z; Z 0g [fYi j 1 � i � card(T) + 2g:Similarly, all other components of � are �xed. Denote by �U the obtainedsystem. Because GU contains no axiom, the axiom XBAm+1BBABY of thecomponent A2 of �U will be omitted, and this is the place where we will addthe new axioms, encoding a given TT system.More precisely, given an arbitrary TT system, �0, in view of Theorem 1,there is a type-0 grammar G0 = (N; T; S; P) such that L(�0) = L(G0). Takethe code of G0, a string w(G0) constructed as in [3], and add to A2 the setA�0 = fXBAm+1Bw0(G0)Y g;, where w0(G0) is obtained from w(G0) by re-placing each nonterminal Zi with the "code" BAiB, as in the proof of Lemma4. What we obtain is a system �0U such that L(�0U) = L(G0). Indeed, forG0U = (NU ; T; w(G0); PU) we have L(G0U) = L(G0). From the construction inthe proof of Lemma 4 we have L(G0U) = L(�0U). As G0 is equivalent with thearbitrarily given TT system �, we have L(�0U) = L(�). This proves that �U isuniversal, indeed. 2Observe that the "program" of the particular TT system � introduced inthe universal TT system (which behaves like a computer) consists of only onestring, added as an axiom of the second component of the universal system.The problem formulated after Theorem 1 can be reformulated for the uni-versal systems: can we bound the degree of a universal TT system ? Another(practical) question is to build a universal TT system in a direct way, not usingthe construction in [3] for universal type-0 grammars (and making the universalTT system able to simulate any Turing machine, directly, not any TT system;this would be closer to the idea of a DNA computer, which is supposed to runarbitrary algorithms, not necessarily encoded as TT systems).Acknowledgement. Thanks are due to Z. F�ul�op, for very useful remarksabout an earlier version of the paper. 19

References[1] L. M. Adleman, Molecular computation of solutions to combinatorial prob-lems, Science, 226 (Nov. 1994), 1021 { 1024.[2] L. M. Adleman, On constructing a molecular computer, Manuscript incirculation, January 1995.[3] C. Calude, Gh. P�aun, Global syntax and semantics for recursively enumer-able languages, Fundamenta Informatica, 4, 2 (1981), 254 { 254.[4] E. Csuhaj-Varj�u, J. Dassow, J. Kelemen, Gh. P�aun, Grammar Systems.A Grammatical Approach to Distribution and Cooperation, Gordon andBreach, London, 1994.[5] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, DiscreteAppl. Math., 31 (1991), 261 { 277.[6] R. Freund, L. Kari, Gh. P�aun, DNA computing based on splicing: theexistence of universal computers, submitted, 1995.[7] T. Head, Formal language theory and DNA: an analysis of the generativecapacity of speci�c recombinant behaviors, Bull. Math. Biology, 49 (1987),737 { 759.[8] T. Head, Gh. P�aun, D. Pixton, Language theory and molecular genetics,chapter 8 in volume 2 of Handbook of Formal Languages (G. Rozenberg, A.Salomaa, eds.), in preparation.[9] R. J. Lipton, Speeding up computations via molecular biology, Manuscriptin circulation, December 1994.[10] R. J. Lipton, DNA solution of hard computational problems, Science, 268(April 1995), 542 { 545.[11] Gh. P�aun, Splicing. A challenge for formal language theorists, Bulletin ofthe EATCS, 57 (1995).[12] Gh. P�aun, On the splicing operation, Discrete Appl. Math., to appear.[13] Gh. P�aun, Regular extended H systems are computationally universal, J.Inform. Process. Cybern., EIK, to appear.[14] Gh. P�aun, G. Rozenberg, A. Salomaa, Computing by splicing, submitted,1995.[15] Gh. P�aun, L. Santean, Parallel communicating grammar systems: the reg-ular case, Ann. Univ. Buc., Matem.-Inform. Series, 38, 2 (1989), 55 { 63.20

[16] D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 1995.[17] A. M. Turing, On computable numbers, with an application to the Entschei-dungsproblem, Proc. London Math. Soc., Ser. 2, 42 (1936), 230 { 265; acorrection, 43 (1936), 544 { 546.[18] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

21

